应用介绍
卢宗青指出,基于互联网视频预训练通用动作模型,再通过后期适配训练实现对不同机器人本体及场景的迁移,「智在无界」的技术路径可以避免因硬件迭代导致的数据浪费,继而有效解决真机数据稀缺与场景泛化的矛盾。目前,公司正同头部机器人厂商推进场景验证合作,以加快具身智能在更多领域的应用落地。
卢宗青指出,基于互联网视频预训练通用动作模型,再通过后期适配训练实现对不同机器人本体及场景的迁移,「智在无界」的技术路径可以避免因硬件迭代导致的数据浪费,继而有效解决真机数据稀缺与场景泛化的矛盾。目前,公司正同头部机器人厂商推进场景验证合作,以加快具身智能在更多领域的应用落地。